Management of atrial fibrillation: an overview of the NICE guidance on AF management

TIMOTHY WATSON, EDUARD SHANSTILA, GREGORY YH LIP

Abstract

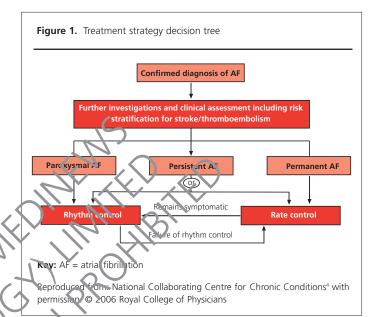
his article aims to provide an overview of the management of atrial fibrillation (AF), with reference to the recently published National Institute for Health and Clinical Excellence (NICE) guidelines on AF management (http://www.nice. org.uk/CG36/guidance/pdf/english). This article is not meant to cover the whole guideline nor be a systematic review, as the full guideline contains all the search strategies and appraised evidence tables, and represents a comprehensive assessment of the evidence behind the recommendations in the NICE guideline (also available at http://rcplondon.ac.uk/pubs/books/af/index.asp).

Key words: atrial fibrillation, NICE, guidelines.

Br J Cardiol 2007:14:23-8

Introduction

The management of atrial fibrillation (AF) has, for many years, varied significantly between physicians, with often much debate as to the optimal approach to be taken. Since AF is associated with a substantial excess of both morbidity and mortality it is clear that a streamlined guideline-based approach to management is necessary.²


Notably, AF and its complications now consume 1% of the UK National Health Service budget.³ Hence, the recent publication of evidence-based guidelines from the National Institute for Health and Clinical Excellence (NICE) could not be more appropriate.⁴ Other guidelines are also available, such as the joint American College of Cardiology/American Heart Association/European Society of Cardiology guidelines (recently updated in 2006) and the American College of Chest Physicians guidelines on antithrombotic therapy for AF.^{5,6} Some aspects of these guidelines merit comment.

Most guidelines on AF management are largely 'expert con-

University Department of Medicine, City Hospital, Birmingham, B18 7QH.

Timothy Watson, Research Fellow Eduard Shanstila, Research Fellow Gregory YH Lip, Professor of Cardiovascular Medicine

Correspondence to: Professor GYH Lip (E-mail: g.y.h.lip@bham.ac.uk)

ensus-based' i.e. formulated by a large group of cardiology experts following a review of the published evidence. The NICE guidelines on AF management are different as the methodology was based on systematic reviews of the world literature performed (by an information specialist) following definition of the guideline scope. 4 The scope itself underwent public consultation and was modified in line with suggestions from stakeholders to address key areas pertaining to AF management that are applicable to UK clinical practice. These systematic reviews were then critically appraised (by a health services researcher) and costeffectiveness analyses applied (by a health economist). The distilled, appraised evidence thus gathered was then debated by a multi-disciplinary Guideline Development Group (GDG), which consisted of cardiologists (only three), general physicians, nurses, pharmacists, general practitioners and two lay representatives (one of whom had AF). The recommendations were then formulated. The GDG was led by a Chair (a physician who was a non-cardiologist) and a Clinical Adviser (a cardiologist with special interest in AF management). Invited experts, including a stroke physician, cardiac surgeon and a haematologist, also contributed where evidence for some sections were being debated.

The draft NICE guideline then underwent two rounds of public stakeholder consultation, which was followed by the formal publication of the guideline in June 2006. The remit of the NICE guideline on AF management was to be practical and pragmat-

ic which would be applicable for more than 80% of AF patients for over 80% of the time in the UK setting.

Classification

AF is now generally classified according to the temporal pattern of presentation as: i) recent onset (within 48 hours); ii) paroxysmal; iii) persistent (duration seven days or more); or iv) permanent (duration greater than one year or refractory to cardioversion attempts).^{4,5,7} This simple classification (see figure 1) merely offers an idea of the likely time course of AF and may help guide management objectives.

In reality, management of patients with AF should be guided by many considerations, including symptoms, haemodynamic stability and associated co-morbidities (such as hypertension and heart failure).

Symptoms

Patients with AF can present with a wide variety of symptoms and many are asymptomatic. Where AF is suspected, it is important to confirm the diagnosis before initiating management strategies. Patients presenting with any of the following: breathlessness/dyspnoea, palpitations, syncope/dizziness, chest discomfort, and stroke/transient ischaemic attack etc, should have manual pulse palpation performed to assess for the presence of an irregular pulse that may indicate underlying AF. This should then be confirmed electrocardiographically.⁴

Investigation of AF

The assessment of the patient with AF needs to be methodical. As always, a thorough history taking and clinical examination are essential and may alert the physician to potential causes for AF and the impact on the patient's lifestyle.

To confirm the diagnosis of AF an electrocardiogram (ECG) should be performed in all patients in whom AF is suspected because an irregular pulse has been detected, whether symptomatic or not. A blood workup (full blood count, electroixes and thyroid function tests) and chest X-ray are essential; an echocardiogram is often useful.

In patients with suspected paroxysmal AF, which is undetected by standard ECG recording, the NICE guidelines suggest that a 24-hour ambulatory ECG monitor should be used in those with suspected asymptomatic episodes or symptomatic episodes less than 24 hours apart. However, a seven-day Holter or an event recorder ECG should be used in those with symptomatic episodes more than 24 hours apart.

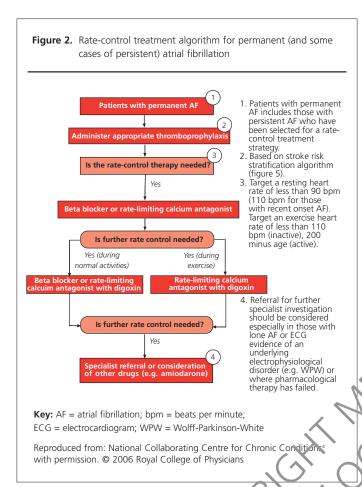
Rate control or rhythm control

Theoretically, restoration of sinus rhythm should offer the premise of improved haemodynamics and symptom relief, whilst potentially reducing the thromboembolic tendency and stroke risk. Unfortunately, this is often unrealistic. The tendency in many patients with AF is towards recurrence (often asymptomatic) even if rhythm control succeeds initially. Even when using an aggressive serial cardioversion strategy for relapse, approximately half the patients remain in sinus rhythm at one year.⁸ At five

years, only 25% remain free of AF.⁹ These recurrences may be asymptomatic and thereby still confer an increased risk of stroke, of which the clinician may be unaware. This knowledge means that many patients should be considered for long-term anticoagulation even if rhythm control has apparently succeeded.¹⁰

As to whether rhythm or rate control should be offered as first line, some data from clinical trials are available. Large studies such as the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) trial¹¹ suggest that rate control is not an inferior strategy to rhythm control. There was no difference in the primary end point of overall mortality at five years and no significant difference in the composite secondary outcome measure of death, disabling stroke, disabling anoxic encephalopathy, major bleeding and cardiac arrest, between the study arms.

Importantly, a rhythm control strategy was associated with a higher rate of hospitalisations and more frequent adverse drug reactions. An interesting post-hoc analysis of the predictors of survival in the AFFIRM study showed that anticoagulation therapy and sinus rhythm were potent predictors of survival. However, a greater mortality associated with anti-arrhythmic drug use offset the survival advantage of maintaining sinus rhythm.¹² This implies that survival would be improved if better drugs or techniques to maintain sixus rhythm were available.


Of course, extrapolating such clinical trial data to the 'real worlo' can be fraught with difficulties. To help guide clinical decisions, the Nr E guidelines have suggested that rhythm control should be offered to the following patients as the preferred initial option: those with lone AF, or AF secondary to a corrected precipitant (e.g. alcohol); patients with symptoms despite optimal rate control; and patients with heart failure. However, these categories are not mutually exclusive from those where a rate control strategy is the preferred option. Thus, associated comorbidities and patient choice should be considered.

Drug therapy for atrial fibrillation

The crux of management of acute AF is primarily an assessment of haemodynamic stability. In those with life-threatening features (haemodynamic compromise, severe cardiac decompensation, angina etc), emergency electrical cardioversion should always be considered irrespective of duration of onset.^{4,13} In the more stable patient, a rate-limiting calcium channel blocker or beta blocker should be tried as first line, but where these are inappropriate (e.g. pulmonary oedema), intravenous amiodarone is preferred.

It is also important to consider electrophysiological abnormalities, such as Wolff-Parkinson-White syndrome, as an underlying diagnosis, particularly in younger patients without evidence of structural or ischaemic heart disease. In this situation, atrioventricular node-blocking agents (e.g. diltiazem, verapamil, or digoxin) should not be used as these may exacerbate the ventricular rate and are potentially dangerous. Here it would be appropriate to consider intravenous flecainide for attempting pharmacological cardioversion.^{4,14}

It is generally accepted that a resting heart rate below 90 bpm is optimal whilst, on exertion, the heart rate should not

exceed 110 bpm in the sedentary patient or '200 minus age' in the ambulatory patient. For many years, the mainstay of drug therapy for rate control in AF was the cardiac grosside, digoxin. This drug is of limited efficacy, however, in the context of hyperadrenergic states, namely thyrotoxicosis, fever, pari-operatively and – most importantly – during exercise. Thus, digoxin monotherapy is only likely to offer adequate rate control in elderly sedentary patients. The algorithm for rate control for permanent AF from the NICE guideline is illustrated in figure 2.

Beta blockers are particularly effective at controlling ventricular rate and should be used as first-line agents. Additionally, beta blockade also reduces the chance of recurrence following successful cardioversion, and these drugs are useful first-line agents in paroxysmal AF. In the peri-operative setting, beta blockers reduce the likelihood of developing AF in those deemed at risk.

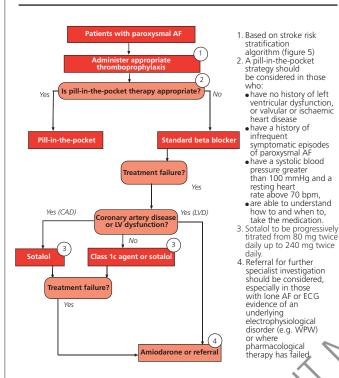
The rate-limiting, non-dihydropyridine calcium channel blockers (diltiazem, verapamil) are also frequently used to optimise rate control in those unable to take or tolerate a beta blocker. Although digoxin is no longer considered first line, it remains a useful adjunct in patients who remain tachycardic at rest and can be used in combination with either beta blockers and calcium channel blockers as combination therapy. Despite these drugs, some will continue to have poor control of ventricular rate. In these circumstances, agents such as amiodarone are

advised. This drug is also useful in those with paroxysmal AF and frequent relapses (despite adequate doses of first-line antiarrhythmic agents, such as class 1c drugs (e.g. flecainide, propafenone and sotalol). Sadly, the potent nature of amiodarone means side effects are common, particularly with prolonged exposure. This drug is, therefore, usually initiated only under specialist guidance so that patients can be followed-up in the long-term.

Cardioversion

In persistent AF, cardioversion can be performed electrically or pharmacologically. Electrical cardioversion may be initially successful in 75–93% of patients but this depends strongly on the duration of AF (success rates are particularly poor after one year), left atrial size and co-existing structural heart disease. 4,19-21 Pharmacological cardioversion can be achieved using a number of drugs but, in the UK, the most commonly used agents are flecainide and amiodarone. There is often little to choose (apart from speed of action) between oral and intravenous administration, with successful cardioversion reported in up to 80% with oral ilecamide inerapy, rising to 90% with intravenous administration.4 As release following cardioversion is common, antiarrhythmic drugs are often required to improve the likelihood of long-term maintenance of sinus rhythm. Beta blockers are the most commonly used drugs for this purpose, although long-term amiodarone is required in some patients (particularly those who are heavily symptomatic with AF), whilst flecainide and other class I drugs are used in younger patients without structural or ischaemic heart disease.4

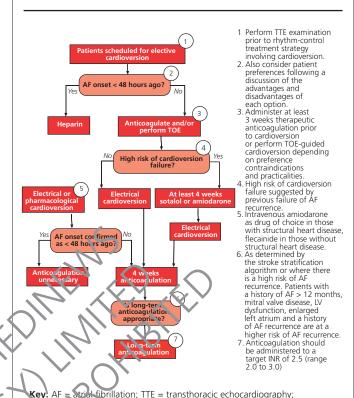
side effects


All anti-arrhythmic drugs have side effects but the problem is particularly pertinent with class I and III drugs. These alter the fluctuation of potassium or sodium channels of atrial cells and can thereby modify the refractory period, resulting in QT and QRS prolongation.²² This can potentially lead to the life-threatening arrhythmias, including 'torsades de pointes', in up to 5% of patients.^{22,23} Several factors have been identified as conferring increased risk for this, including the following: hypokalaemia or hypomagnesaemia, congenitally prolonged QT intervals, bradycardia, congestive heart failure, female sex, pauses associated with the conversion of AF to sinus rhythm, and concomitant use of medications, especially those which interfere with the hepatic metabolism of anti-arrhythmic drugs, such as erythromycin.²³

It is therefore advisable that caution be used in prescribing these drugs and a 12-lead ECG sought after treatment initiation, to assess for QT prolongation. Additionally, some class Ic drugs can convert AF into atrial flutter with 1:1 atrioventricular nodal conduction, with resultant haemodynamic instability. Thus, concomitant use of atrioventricular nodal blocking agents, such as beta blockers or rate-reducing calcium channel blockers, is usually recommended.

Treatment algorithms

The algorithms from the NICE guideline for the management of


Figure 3. Rhythm control treatment algorithm for paroxysmal atrial fibrillation

Key: AF = atrial fibrillation; LV = left ventricular; ECG = electrocardiogram; WPW = Wolff-Parkinson-White

Reproduced from: National Collaborating Centre for Chronic Conditions with permission. © 2006 Royal College of Physicians

Figure 4. Cardioversion treatment algorithm

patients with paroxysmal AF and cardioversion for those with persistent AF are shown in figures 3 and 4, respectively.

Non-pharmacological treatments

For those who continue to be symptomatic or where antiarrhythmic drugs are ineffective or intoler int, non-pharmacological approaches can be considered. A variety of catheter-based approaches (such as pulmonary vein isolation and atrioventricular nodal modification) and surgical procedures (e.g. Maze) are available as potential treatments for AF. A full discussion of this topic is beyond the scope of this brief overview.

The NICE guidelines suggest that referral for such further specialist interventions should be considered in the following: those in whom pharmacological therapy has failed; those with lone AF; and those with ECG evidence of an underlying electrophysiological disorder (e.g. Wolff-Parkinson-White syndrome). The reasons for referral for specialist intervention should be explained and discussed with the patient.

Antithrombotic therapy

Much of the morbidity and mortality associated with AF is related to the significant associated risk of stroke and thrombo-

embolism. AF increases the risk of stroke by up to five-fold across all age groups and accounts for up to 15% of all ischaemic stroke.²⁴ With age, the association continues to strengthen and in those over 80 years, AF accounts for nearly 25% of strokes, especially in the presence of co-morbidities.²⁴ Of particular alarm is that those with AF, who have a stroke, have a poor outcome with greater disability, mortality and longer hospital stays.²⁵

TOE = transoesophageal echocardiography; LV = left ventricular

h permission. © 2006 Royal College of Physicians

Reproduced from: National Collaborating Centre for Chronic Conditions⁴

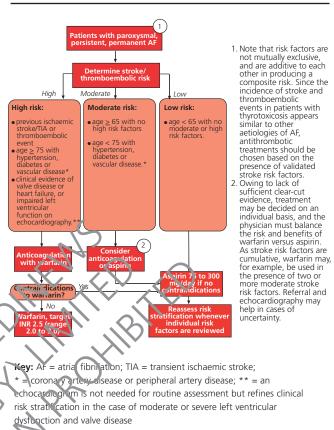
A recent meta-analysis of 13 randomised trials demonstrated that, compared to placebo, adjusted-dose warfarin offers a reduction in risk of ischaemic stroke or systemic embolism by two-thirds. This effect was greater for secondary compared to primary stroke prevention. Importantly, the efficacy of warfarin is only conferred by adequate anticoagulation and a target INR of 2.0–2.5 should be maintained in most patients, as the risk of stroke increases two-fold in those with an INR 1.5–2.0, and higher still in those with an INR < 1.5.27

A meta-analysis of the six main randomised, controlled trials of aspirin versus placebo demonstrated that aspirin treatment offers a significant stroke risk reduction of 22% (95% CI: 2–38).²⁸ This rather unimpressive figure is broadly similar to the effect seen in vascular disease patients and may therefore simply reflect the effect of aspirin on the various vascular risk factors

(e.g. diabetes and hypertension) that commonly co-exist with AF. Additionally, stroke in aspirin-treated AF patients is frequently more severe, often with greater mortality and disability. Aspirin should therefore be considered an inferior substitute for warfarin in high-risk AF patients.

Despite convincing evidence in favour of warfarin, many physicians continue to avoid appropriate anticoagulation prescription.²⁹⁻³³ This pattern is most commonly seen in the elderly and those with a history of falls or bleeding events. Although safe prescribing must always be practised, these patients often do represent those at highest risk of stroke and, wherever possible, a full discussion and assessment of bleeding risk should be made. Additionally, up to 40% of patients would prefer not to receive warfarin³⁴ and may press the physician towards the prescription of aspirin instead.

The potential pitfalls of this must be discussed with each patient and should be balanced with the knowledge that many patients perceive a moderate-to-severe stroke as worse than death.³⁵ Additionally, anticoagulation decisions should not be unduly delayed as there would appear to be a clustering of thromboembolic events around the time of AF onset.


Numerous risk stratification protocols have been proposed^{4,36} in an effort to identify high-risk patients with AF who should be targeted for anticoagulation. One popular and well-validated risk stratification scheme is CHADS₂ where one point is given for: Congestive heart failure, Hypertension, Age ≥ 75 years and Diabetes mellitus, and two points for Stroke or transient ischaemic attack.4,36 This scheme highlights the curnulative nature of stroke risk factors, and those with a CHADS2 score of > 2 are 'high risk', whilst those with a score of 0 are low risk. 4,36 The NICE guidelines have opted for an algorithm-based scheme based on modification of the original AF investigators' algorithm³⁷ and applied in a primary care setting ir the United Kingdom (figure 5). The NICE clinical risk stratification defines subjects into low-, moderate- and high-risk categories, this clinical risk stratification scheme has been validated to be broady similar to the CHADS₂ scheme for predicting stroke and vascular event rates 3

The assessment of bleeding risk is part of the crinical assessment of AF patients prior to starting anticoagulation therapy, with particular attention being paid 'o some 'high risk' categories of patients, such as the elderly, those with concomitant use of antiplatelet drugs (aspirin, clopidogrel) or non-steroidal anti-inflammatory agents, those with polypharmacy, uncontrolled hypertension, or a history of bleeding (e.g. peptic ulcer, cerebral haemorrhage) and poorly controlled anticoagulation therapy.⁴

Conclusion

AF represents a growing health epidemic in many ageing Western populations and there is growing emphasis on appropriate management of this condition. Aside from appropriate rate or rhythm control, it is essential for a full and methodical assessment of the individual thromboembolic risk to be carried out. Recent guidelines developed by NICE offer the premise of a streamlined, logical approach to the practical and pragmatic

Figure 5. Stroke risk stratification scheme algorithm

Reproduced from: National Collaborating Centre for Chronic Conditions⁴
with permission. © 2006 Royal College of Physicians

management of AF based on a UK-applicable evidence-based clinical guideline.

Conflict of interest

GL has received funding for research, educational symposia, consultancy and lecturing from different manufacturers of drugs used for the treatment of atrial fibrillation and thrombosis. He is Clinical Adviser to the Guideline Development Group writing the United Kingdom National Institute for Health and Clinical Excellence (NICE) Guidelines on atrial fibrillation management (www.nice.org.uk). TW and ES: none declared.

References

- Lip GYH, Zarifis J, Watson RDS, Beevers DG. Physician variation in the management of patients with atrial fibrillation. Heart 1996;75:200-05.
- 2. Freestone B, Lip GYH. Epidemiology and costs of cardiac arrhythmias. In: Lip GYH, Godtfredsen J (eds). *Cardiac arrhythmias: a clinical approach*. Edinburgh: Mosby, 2003;3-24.
- Stewart S, Murphy N, Walker A, McGuire A, McMurray JJ. Cost of an emerging epidemic: an economic analysis of atrial fibrillation in the UK. Heart 2004;90:286-92.
- National Collaborating Centre for Chronic Conditions. Atrial fibrillation: national clinical guideline for management in primary and secondary

- care. London: Royal College of Physicians, 2006.
- Fuster V, Rydén LE, Cannom DS et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation). J Am Coll Cardiol 2006;48:e149-e246.
- Singer DE, Albers GW, Dalen JE, Go AS, Halperin JL, Manning WJ. Antithrombotic therapy in atrial fibrillation: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004;126(3 suppl):429S-456S.
- 7. Levy S, Camm AJ, Saksena S et al. International consensus on nomenclature and classification of atrial fibrillation; a collaborative project of the Working Group on Arrhythmias and the Working Group on Cardiac Pacing of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Europace 2003;5:119-22
- Crijns HJ, Van Gelder IC, Van der Woude HJ et al. Efficacy of serial electrical cardioversion therapy in patients with chronic atrial fibrillation after valve replacement and implications for surgery to cure atrial fibrillation. Am J Cardiol 1996;78:1140-4.
- Bertaglia E, D'Este D, Zerbo F, Zoppo F, Delise P, Pascotto P. Success of serial external electrical cardioversion of persistent atrial fibrillation in maintaining rhythm; a randomized study. Eur Heart J 2002;23:1522-8.
- 10. Lip GY, Tello-Montoliu A. Management of atrial fibrillation. Heart 2006; 92:1177-82
- 11. Wyse DG, Waldo AL, DiMarco JP et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002;347:1825-33.
- 12. Corley SD, Epstein AE, DiMarco JP et al; AFFIRM Investigators. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation 2004;109:1509-13.
- 13. Nolan J. Peri-arrest arrhythmias. In: Resuscitation Council. Resuscitation Guidelines 2005. London: Resuscitation Council, 2005.
- 14. Martinez-Marcos FJ, Garcia-Garmendia JL, Ortega Carole A, Fernandez-Gomez JM, Santos JM, Camacho C. Comparisor, of intravenous cainide, propafenone, and amiodarone for conversion of acute attial fibrillation to sinus rhythm. Am J Cardiol 2000, **36**:950-3 15. Farshi R, Kistner D, Sarma JS, Longmate J. Singh Bl
- Farshi R, Kistner D, Sarma JS, Longmate JA. Singh BM. Ventricular rate control in chronic atrial fibrillation duling daily activity and programmed exercises a crossover open label south. exercise: a crossover open-label study of five drug regimens. J Am Cardiol 1999;33:304-10.
- 16. Lundstrom T, Ryden L. Ventricular rate control and exercise perfo mance in chronic atrial fibrillation: effects of diltazem and verapamil. J Am Coll Cardiol 1990; 16:86-90.
- 17. Li-Saw-Hee FL, Lip GY. Digoxin revisited. *QJM* 1998;\$1:259-64.
- 18. Singh BN. Antiarrhythmic actions of amiodarone. a profile of a paradoxical agent. Am J Cardiol 1996;78:41-53.
- 19. Gallagher MM, Guo XH, Poloniecki JD, Yao YG, Ward D, Camm AJ. Initial energy sitting, outcome and efficiency in direct current cardioversion of atrial fibrillation. J Am Coll Cardiol 2001;38:1498-504.

- 20. Lundstrom T, Ryden L. Chronic atrial fibrillation: long term results of direct current cardioversion. Acta Med Scand 1988;223:53-9.
- 21. Dittrich HC, Erikson JS, Schneideman T, Blacky AR, Savides T, Nicod PH. Echocardiographic and clinical predictors for outcome of elective cardioversion of atrial fibrillation. Am J Cardiol 1989;63:193-7.
- 22. Friedman PL, Stevenson WG. Proarrhythmia. Am J Cardiol 1998;82:50N-
- 23. Dapro B. Spectrum of drugs prolonging QT interval and the incidence of torsades de pointes. Eur Heart J 2001;3(suppl K):K70-K80
- 24. Wolf PA, Mitchell JB, Baker CS Kannel WB, D'Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch Int Med 1998;**158**:229-34.
- 25. Kimura K, Minematsu K, Yamaguchi T, Japan Multicenter Stroke Investigators' Collaboration (J-MUSIC). Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. J Neurol Neurosurg Psychiatry 2005;76:679-83.
- 26. Lip GYH, Edwards SJ. Stroke prevention with aspirin, warfarin and xilmelagatran in patients with non-valvular atrial fibrillation: a systematic review and meta-analysis. Thromb Res 2006;118:321-33.
- 27. Oden A, Fahlen M, Hart RG. Optimal INR for prevention of stroke and death in atrial librillation: a critical appraisal. Thromb Res 2006;117:493-
- 28. Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic therapy to prevent stroke in pagents with atrial fibrillation: a meta-analysis. *Ann Intern Med* 1999:**131**.497-501.
- 6e AS, Hylek FM, Porowsky LH, Phillips KA, Selby JV, Singer DE. Warfarin se among ambulatory patients with nonvalvular atrial fibrillation: the Anticoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. *Ann Intern Med* 1999;**131**:927-34.

 30. Stafford PS, Singer DE, Recent national patterns of warfarin use in atrial fibrillation. *Circulation* 1998;**97**:1231-3.
- Menaelson G Aronow WS. Under-utilization of warfarin in older persons with chronic nonvalvular atrial fibrillation at high risk for developing stroke. Act Scriatr Soc 1998;**46**:1423-4.
- Lip GY, Zarifis J, Watson RD, Beevers DG. Physician variation in the managreement of patients with atrial fibrillation. Heart 1996;75:200-05.
- 33 A, Lip GYH. Anticoagulation as thromboprophylaxis for atrial fiblation: implications in the 'real world' and the need for risk stratification. Blood Coagul Fibrinolysis 2005;16:461-4.
- Protheroe J, Fahey T, Montgomery AA, Peters TJ. The impact of patients' preferences on the treatment of atrial fibrillation: observational study of patient-based decision analysis. BMJ 2000;320:1380-4.
- 35. Solomon NA, Glick HA, Russo CJ, Lee J, Schulman KA. Patient preferences for stroke outcomes. Stroke 1994;25:1721-5.
- 36. Lip GY, Boos CJ. Antithrombotic treatment in atrial fibrillation. Heart 2006;92:155-61.
- 37. Laupacis A, Boysen G, Connolly S et al. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials. Arch Int Med 1994;154:
- 38. Lip GYH, Lane D, van Walraven C, Hart R. The additive role of plasma von Willebrand Factor levels to clinical factors for risk stratification in patients with atrial fibrillation. Stroke 2006;37:2294-300.